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Abstract

Planning systems which make use of domain
theories can produce more accurate plans and
achieve more goals as the quality of their do-
main knowledge improves. MTR, a multi-strategy
learning system, was designed to learn from sys-
tem failures and improve domain knowledge used
in planning. However, augmented domain knowl-
edge can decrease planning efficiency. We de-
scribe how improved knowledge that becomes ex-
pensive to use can be approximated to yield cal-
culated tradeoffs in accuracy and efficiency.

1 INTRODUCTION

Successful planning and control systems in realistic do-
mains depend on the ability to improve with experi-
ence. One characteristic of such systems is the ability
to recover gracefully from failures, and avoid similar
failures in the future. The long term objective of our
machine learning research (Kedar et al., 1991) is to im-
prove planning and control systems by autonomously
and systematically detecting failures, and refining do-
main-knowledge to correct them.

Adding knowledge to a system via machine learning
methods is not without consequent cost to the sys-
tern making use of this knowledge. Recent research
in machine learning has begun to address this cost in
addition to considering system performance improve-
ment which results from the added knowledge. The no-
tion of a utility problem was first presented in (Minten,
1988), to refer to the degradation of system perfor-
mance by machine learning (specifically Explanation-
Based Learning). Holder (1988) generalized this idea
to other learning paradigms and performance metrics.

Most approaches to utility analysis focus on a single
performance system, a single learning paradigm, and

a single measure of utility (e.g. efficiency in Minton,

1988; Tambe 1990; or accuracy in Holder, 1991). The
utility of learned knowledge in more eomplex inte-
grated systems needs to be measured along several di-

mensions at once. In this paper, we present a case
study of a multi-strategy machine learning system,
mutual theory refinement, which refines knowledge for
an integrated reactive system, the Entropy Reduction
Engine (Drummond, et al., 1991). We describe a method
for trading off two conflicting utility metrics, system
accuracy and system efficiency, in order to achieve par-
ticular global performance objectives.

2 LEARNING IMPROVES PLAN
ACCURACY

QOur case study is cast within the Entropy Reduction
Engine (ERE), a system which integrates planning and
scheduling with reaction. ERE uses operators to model
actions, and domain constraints to model physical laws
(e.g., “the agent cannot be in two locations at once”).
The operators and constraints are only approximate
models, and therefore may not always correctly pre-
dict the results of actions. Prediction failures drive
the learning system, mutual theory refinement (MTR)
(Kedar et. al., 1991) , to refine these two world models.

MTR distinguishes itself from other analytic theory re-
finement methods (e.g. Hammond; 1986; Chien, 1989) in
the ability to use an approximate model, rather than
a fully correct and complete one, to refine other ap-
proximate models. MTR is also unique in its ability
to switch from analytic to inductive refinement when
the approximate models are insufficient. While reduc-
ing prediction failures, the ultimate aim of MTR is to
improve the overall performance of the associated sys-
tem (e.g. ERE). We have demonstrated experimen-
tally that MTR increases the accuracy of the associated
ERE system, but does so while degrading its efficiency
(Kedar & McKusick, 1992) . That is, overall perfor-
mance involves an accuracy/efficiency tradeoff.

3 APPROXIMATION IMPROVES
PLANNING EFFICIENCY

Learning in an integrated system needs to promote
some global performance objectives, e.g. a certain level



—
(=]

®

Percent Goal Achievement
wn
<

@ *

O O

0 x& x
700

Match Cost in function calls

800

Figure 1: Tradeoffs in Efficiency and Accuracy While Ap-
proximating Operator Preconditions.

of system goal achievement given an efficiency con-
straint. Unfortunately, an augmented domain theory
may be too inefficient to use given such a constraint.
Our objective here is to show that by approximating
the refined theory in an informed manner, we can im-
prove system efficiency while maintaining an accept-
able level of accuracy. Through experimentation, we
can anticipate how effective a particular approxima-
tion is likely to be with respect to the global accuracy
and efficiency objectives.

We illustrate this process using data from our case
study. We use two methods of approximating our the-
ory: first, to improve efficiency in operator match cost
once missing preconditions have been learned, the sys-
tem approximates certain preconditions by truifying
or nullifying them (as in Keller, 1987). Second, to im-
prove efficiency in planning search once multiple out-
comes have been learned, the system approximates the
operator model by pruning some of the outcomes.

Figure 1 shows accuracy and efficiency results, aver-
aged for a set of 100 test problems, for all the approxi-
mate theories generated using the first approximation
method. The horizontal axis plots efficiency, as mea-
sured in match cost. The vertical axis plots accuracy in
terms of percent goal achievement. Each point on the
scatter plot represents the average tradeoff yielded by
a particular approximated theory. Boundary points,
also known as pareto-optimal points (Ellman, 1988), are
circled. Each point represents a version of the refined
knowledge that cannot be improved in one dimension
without degradation in the other dimension. A system
can attain global objectives if a pareto-optimal point
exists which meets or exceeds these objectives.

For example, consider global objectives where desired
accuracy on a set of problems is at least 60% goal
achievement, with match cost below 700 function calls.
We find the pareto-optimal point which best satisfies
the global objectives at 67% goal achievement. By ex-
plicitly measuring and plotting the tradeoffs for par-
ticular approximations, the system is able to identify
one yielding a tradeoff that is likely to achieve the per-
formance objectives on new tasks.

4 CONCLUDING REMARKS

The goal of approximating refined knowledge is to
achieve improvement in one utility dimension with-
out unacceptably degrading another. In different sit-
uations different approximations of the same knowl-
edge may be appropriate to satisfy particular perfor-
mance objectives. We are currently implementing an
ERE/MTR performance system monitor that will en-
able the performance system to dynamically approxi-
mate the knowledge, sensitive to various performance
measures and performance System components. Such
an approach could lead to a more flexible system which
achieves goals efficiently without having to limit or de-
structively modify its store of learned knowledge.

References

Chien, S. (1989). Using and refining simplifications:
Explanation-based learning of plans in intractable do-
mains. Proc. of the Eleventh IJCAI (pp. 590-595). De-
troit: Morgan Kaufmann.

Drummond, M., Bresina, J., and Kedar, S. (1991). The en-
tropy reduction engine: integrating planning, scheduling,
and control. AAAI Spring Symp. on Integrated Intelligent
Architectures (pp. 48-53). Palo Alto, CA.

Ellman, T. (1988). Approximate theory formation: An
explanation-based approach. Proc. of the Seventh Natl.
Conf. on Al (pp. 570-574). St. Paul, MN: AAAJ Press.

Hammond, K. (1986). Learning to anticipate and avoid
planning problems through the explanation of failures.
Proc. of the Fifth AAAI Conf. (pp. 556-560). Philadel-
phia: Morgan Kaufmann.

Holder, L. B. (1988). Maintaining the utility of learned
knowledge using model-based adaptive control. Master’s
thesis, Dept. of Comp. Sci., University of [llinois, Urbana.

Holder, L. B. (1991). Selection of learning methods using
an adaptive model of knowledge_utility. Proc. of the First
Internatl. Workshop on Multistrategy Learning. (pp. 247-
254). Princeton, NJ. _

Kedar, S., Bresina, J., and Dent, L. (1991). The blind
leading the blind: Mutual refinement of approximate the-
ories. Eighth Internatl. Workshop in Machine Learning
(pp- 308-312). Evanston, IL: Morgan Kaufmann.

Kedar, S. and McKusick, K. (1992). There is No Free
Lunch: Tradeoffs in the Utility of Learned Knowledge.
(Tech Rep FIA-92-04): NASA Ames Research Center.

Keller, R. (1987). Defining operationality of explanation-
based learning, Proc. of the Sizth Natl. Conf. on Al (pp.
482-487). Seattle, WA: AAAI Press.

Minton, S. (1988). Quantitative results concerning the util-
ity of explanation-based learning. Proc. of the Seventh
Natl. Conf. on AI (pp. 564-569). St. Paul, MN: Morgan
Kaufmann.

Tambe, M. and Rosenbloom, P. (1996). A framework for
investigating production system formulation with polyno-
mially bounded match. AAAI Spring Symp. on Case-
Based Reasoning (pp. 693-700). Palo Alto, CA.



